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The collision of a solitary wave, travelling over a horizontal bed, with a vertical wall
is investigated using a boundary-integral method to compute the potential fluid flow
described by the Euler equations. We concentrate on reporting new results for that part
of the motion when the wave is near the wall. The wall residence time, i.e. the time the
wave crest remains attached to the wall, is introduced. It is shown that the wall
residence time provides an unambiguous characterization of the phase shift incurred
during reflection for waves of both small and large amplitude. Numerically computed
attachment and detachment times and amplitudes are compared with asymptotic
formulae developed using the perturbation results of Su & Mirie (1980). Other features
of the flow, including the maximum run-up and the instantaneous wall force, are also
presented. The numerically determined residence times are in good agreement with
measurements taken from a cine film of solitary wave reflection experiments conducted
by Maxworthy (1976).

1. Introduction

In this paper we consider the reflection at a vertical wall of a solitary wave, using a
boundary-integral numerical code, a perturbation method, and re-analysis of cine film
taken during the study by Maxworthy (1976). Most attention is given to that part of
the motion during which the point of greatest free-surface elevation (the crest) lies close
to the wall.

The problem of solitary wave reflection has received attention in studies of the
interaction between solitary waves, of which the head-on collision of two equal waves
is a special case equivalent to that studied here. When weakly nonlinear solitary waves
overtake or collide with one another there may be a spatial phase shift but no loss of
energy from either wave once sufficient time has passed for the two waves to separate ;
this is the feature by which a soliton is defined (Zabusky & Kruskal 1965). Recent
studies have shown that large-amplitude solitary water waves do not behave like
solitons. A long time after the collision between two equal waves there is a loss to
secondary waves, and a reduction in wave speed. The reduced wave speed necessarily
produces a spatial phase shift that increases without bound as tU¢.

It is useful to briefly review certain aspects of the phenomena we wish to study, some
of which bear on the interpretation of results to be presented later. In what follows,
ζ(x, t) is the free-surface elevation about the quiescent fluid level and ε¯ a}h is the
dimensionless solitary wave amplitude, a being the amplitude of the incident wave
travelling on a fluid of constant still-water depth h. Byatt-Smith (1971) investigated the
interaction between two weakly nonlinear solitary waves travelling in opposite
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directions and explicitly determined the maximum amplitude of the collision. When, in
the absence of viscosity and surface tension, two waves of equal amplitude collide, one
has the problem of solitary wave reflection from a vertical wall. For this case the
maximum elevation ζ

!
of the wave at the wall, the ‘run-up,’ was reported to be

ζ
!
}h¯ 2ε­"

#
ε#, (1.1a)

showing that the run-up exceeds twice the amplitude of the incident solitary wave.
Oikawa & Yajima (1973) explicitly computed the spatial phase shift ∆X incurred after
reflection from the wall, namely

∆X}h¯ ("
$
ε)"/#, (1.1b)

and it was later noted (Weidman, cf. Maxworthy 1976) that this result is implicitly
contained in the earlier solution of Byatt-Smith (1971). To test the above results,
Maxworthy (1976) performed experiments in a wave tank 5 m long with still-water
depths in the range 4±5! h! 6±7 cm, investigating both endwall and wave–wave
collisions. Here we discuss only his endwall collisions. The solitary wave was initiated
by judiciously varying the amplitude and velocity of a plate pulled through the tank far
from the endwall, and amplitudes up to εE 0±5 were produced for endwall collision
experiments. The motion was recorded on 64 frame}s cine film. Maxworthy found run-
ups ζ

!
in qualitative agreement with (1.1a). However his measured phase shifts were,

within experimental error, independent of ε with a reported value of ∆X}hE 1±2 and
thus the square-root dependence on ε was not verified; in fact his measurements ranged
from 1 to 3 times the value given by (1.1b). (We have taken into account, as observed
by Fenton & Rienecker (1982), that Maxworthy plotted twice the value of ∆X}h given
in (1.1b) for comparison with experiment in his figure 3.) The wave crest lingers at the
wall during reflection for a period which we denote t

r
, the wall residence time. A

noteworthy feature in figure 2 of Maxworthy (1976) is that immediately before and
after impact with the wall the wave crest moves extremely quickly.

Following the experiment described above, there have been a number of
developments starting with the work of Su & Mirie (1980, hereinafter abbreviated to
SM), who carried out a perturbation analysis of two colliding solitary waves to O(ε$).
They found that, although a small dispersive tail trails behind the skewed (backward-
tilting) wave after reflection from the wall, the wave recovers its shape and speed
asymptotically so that its soliton nature is preserved. One concludes, therefore, that no
energy is lost to the dispersive tail at this order in ε. The improved formulae for
maximum run-up and phase shift found by SM are

ζ
!
}h¯ 2ε­"

#
ε#­$

%
ε$, ∆X}h¯ ("

$
ε)"/#(1­(

)
ε). (1.2a, b)

Mirie & Su (1982) continued their study by numerically integrating the Su & Gardner
(1969) equations and produced results for equal-amplitude solitary wave collision.
They found the skewed reflected waveform and the small dispersive tail. However, the
waves did not fully recover their original amplitude after head-on collision, the loss in
amplitude being 0±2% for ε¯ 0±1 increasing to 2% for ε¯ 0±5.

Fenton & Rienecker (1982) used a Fourier series method to solve the fully nonlinear
Euler equations. Their results for the run-up are in close agreement with the
experimental results of Chan & Street (1970). They further showed that while the O(ε$)
theory of SM provides excellent results for the maximum run-up, the spatial phase
shift depends strongly on the position from the wall at which it is measured. In view
of this finding, they suggested that any experiments to determine a phase shift should
be carried out at distances x" 15h from the reflecting boundary. Renouard, Seabra-
Santos & Temperville (1985) subsequently performed careful laboratory experiments
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of solitary wave reflection. They found, in agreement with Mirie & Su (1982) and
Fenton & Rienecker (1982), a transient loss of amplitude as the reflected wave
propagates away from the wall. They placed their probes in the region 15!x}h! 35,
an evident compromise between being sufficiently far from the wall to exceed the zone
of amplitude recovery yet sufficiently close to avoid serious attenuation due to viscous
damping. Their measured phase shifts are considerably smaller than those of
Maxworthy (1976) ; however the scatter is so great that one cannot realistically discern
if the data better fit (1.1b) or the improved perturbation result (1.2b). Renouard et al.
(1985) conclude that the phase shift is highly sensitive to experimental conditions.

Byatt-Smith (1988) put the energy loss problem on firm ground by analytically
investigating the equal-amplitude solitary wave collision to higher order than
previously considered. He definitively shows that the change in amplitude asymp-
totically far from the collision plane is O(ε&). The fact that energy loss first shows up
at this high order explains why even moderate-amplitude solitary waves do closely
exhibit soliton behaviour both in numerical computations and laboratory experiments.

Grilli & Svendsen (1990) use a boundary-integral method to solve for the potential
flow beneath a moving free surface. Integrations are initiated with data for a solitary
wave using the exact technique of Tanaka (1986). They show that for ε" 0±3 the time
evolution of the force on the wall has two extrema. The first and larger maximum
occurs before the time of greatest run-up, here denoted by t

!
, and the smaller second

maximum in force occurs after t
!
. This confirms the results of Cooker (1990) who used

the boundary-integral method of Dold & Peregrine (1986), as adapted by Tanaka et al.
(1987). Cooker (1990) reported results for waves up to ε¯ 0±7 and concluded that the
double force extrema on the wall is associated with the high vertical acceleration in the
motion near the water line (see also Mirie & Su 1982). Cooker (1990) also computed
estimates of the time the wave crest resides at the wall.

In this investigation we present results obtained using the fully nonlinear potential
flow code of Cooker (1990) with exact solitary wave initial data computed by the
method of Tanaka (1986). Realizing that soliton behaviour cannot persist after
reflection at high amplitudes, we concentrate on the motion of the wave when it is near
the wall, and obtain estimates of the wall force and the wall residence time, t

r
. We

propose that t
r
be considered as a unified (in the sense that it encompasses both weakly

nonlinear and high-amplitude waves) measure of the interaction phase changes, which
is easily computed numerically, or measured experimentally.

In §2 we describe the numerical method used to solve the moving free boundary
problem with potential flow. Section 3 gives asymptotic estimates of the times and
amplitudes of wave attachment, detachment, and maximum run-up deduced from the
available perturbation results of SM. In §4 numerical and asymptotic results
characterizing the wall interaction process are compared. We further examine in §4 an
original cine film of Maxworthy (1976) to extract measurements of the wall attachment
and detachment times relative to the time at maximum run-up. A discussion of results
and concluding remarks are given in §5.

2. Boundary-integral method

We briefly outline the method due to Dold & Peregrine (1986), as adapted by Tanaka
et al. (1987) and see also Dold (1992). The technique follows the trend begun by
Longuet-Higgins & Cokelet (1976), Vinje & Brevik (1981), and Baker, Meiron &
Orszag (1982). The water is modelled as inviscid and incompressible fluid in
irrotational motion with a free surface, F. Air motion and surface tension are neglected
so that the dynamic boundary condition on F is that the fluid pressure is a constant
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(zero). The still-water level lies at y¯ 0, and the horizontal impermeable bed lies at
y¯®h. The bed is treated as a line of symmetry of the solution. F is discretized with
points which model fluid particles, obeying the kinematic boundary condition, that
particles on F remain on F. The coordinates of a typical point on F are [X(s, t),Y(s, t)]
where s is a Lagrangian point-label parameter which increases monotonically along F
and takes successive integer values at the discretization points. The velocity potential
inside the fluid is φ(x, y, t). On F, at a point labelled by s, φ¯φ[X(s, t),Y(s, t)]3Φ(s, t).
The potential is harmonic in the fluid domain, and on F we have the boundary
conditions (for a fluid of unit density)

DΦ}Dt¯ "

#
(u#­�#)®gY, (2.1)

DX}Dt¯ ¥φ}¥x, (2.2)

DY}Dt¯ ¥φ}¥y. (2.3)

The method works on a repeated cycle of three steps as follows:
(i) Stipulate values of X, Y, Φ at an initial instant t ;
(ii) Solve a boundary-integral equation to find the velocity on F, and the

acceleration, and higher time derivatives of position;
(iii) Apply (2.1)–(2.3) to time step (X,Y ) to the new position of F and update Φ. This

provides new data for step (i).
The boundary-integral equation in step (ii) is derived from Cauchy’s integral in

principle value form for the complex-conjugate velocity U¯ u®i�. U is expressed in
terms of components tangential and normal to F. The tangential velocity component
is found immediately from the data along the free surface and the normal component
is a function of s which satisfies the integral equation in step (ii). The integral equation
is discretized and simplified to a set of linear equations. Due account is taken of the
finite contributions to the integral from the singular points. Jacobi iteration is used to
solve the system beginning with the solution at the previous time step as a good
approximation for the first iterate. In step (iii) the time stepping is carried out by
expanding X,Y,Φ as fifth-order Taylor series in time, the coefficients of these series
contain terms which depend upon the solutions u, � (and their partial time derivatives)
of the integral equation found in step (ii). The time step size is chosen to ensure that
the last terms of the Taylor series are decreasing in absolute magnitude.

Although some or all of the above features are incorporated in boundary-integral
methods, the Dold & Peregrine (1986) method utilizes techniques which make it more
accurate and efficient than others. The fifth-order Taylor series in time ensures an
accurate prescription of the trajectory of each fluid particle. Tangential derivatives are
calculated with a tenth-order central difference formula, which gives much greater
accuracy than for example cubic splines. For a fluid domain which is quiescent at
infinity we can truncate the domain and allow it to expand as waves propagate toward
the ends of the computational domain. The Jacobi iteration to solve the linear system
from the integral equation is much more efficient, for a large number of surface
discretization points, than a direct method for inverting the system.

As previously mentioned, the boundary-integral method is initiated with solitary
wave data using the method of Tanaka (1986). This discretization places points closer
together at the crest than in the tails of the waveform, with separation distance
inversely proportional to the speed along F as measured in a frame of reference moving
with the crest. The horizontal distance from the wave crest to the wall is x

!
which for

each wave was chosen so that the fluid elevation at the wall was less than 10−&h. The
method is efficient. A free surface composed of 200 points (for a solitary wave of height
ε¯ 0±4) can be simulated over a model time of 10τ (where τ¯ (h}g)"/# in under 10
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minutes on a Sun workstation. The accuracy of the code may be judged in results in
tables 1 and 2 in §4; here the calculated phase speeds determined over the first 10 time
steps, at selected values of ε, are compared with the corresponding exact values com-
puted by the method of Tanaka (1986). Over the time intervals computed the mass of
fluid above still-water level was conserved to within an error of less than 0±05%. As
further testimony to the algorithm’s accuracy the total energy was conserved to within
an error of 0±006% of its initial value. These errors fluctuated through positive and
negative values as the computations proceeded.

3. Perturbation results

3.1. Wa�e attachment and detachment

It is clear from the studies of Mirie & Su (1982), Fenton & Rienecker (1982), and Byatt-
Smith (1988) that large-amplitude solitary waves lose energy on reflection from a
vertical wall, and hence such waves cannot follow a uniformly shifted reflected phase
trajectory. In figure 1 we depict a nonlinear interaction wherein the reflected solitary
wave follows a phase trajectory, asymptotically far from the wall, characterized by a
velocity less than that of the incoming wave. In the figure are shown: t

a
, the attachment

time at which the incident wave crest arrives at the vertical wall ; t
!
, the time of

maximum run-up at the wall ; and t
d
, the detachment time at which the wave crest

leaves the wall. Fenton & Rienecker (1982) introduced t
l
, the phase lag time, a measure

of the temporal phase change incurred as a result of wall reflection. As seen in figure
1, this quantity expresses how much longer the wave crest remains against the wall than
if it had been instantaneously reflected. The difficulty with using t

l
is that it necessitates

an accurate determination, either numerically or experimentally, of trajectory slopes at
large distances from the wall after reflection. We propose using the wall residence time
t
r
¯ t

d
®t

a
as an alternative measure of the effect of the wall on the wave. The time t

r

is non-zero in the linear theory for two equal but oppositely directed waves. The
departure of t

r
from that predicted by linear theory is a measure of the effect of

nonlinearity on the reflection process. This quantity is easily computed numerically
using modern computational techniques. Moreover, measurement of the wall residence
time should not pose any serious problem for the experimentalist, and dissipation
effects during the short interaction period are expected to be minimal.

Temperville (1979) was the first to report the leading-order asymptotic formula for
the wall residence time, using Lagrangian coordinates. His results were independently
confirmed in an Eulerian framework by Power & Chwang (1984). At lowest order, the
interaction between two solitary waves can be described by the linear superposition of
two Korteweg–de Vries solitary waves of equal amplitude propagating in opposite
directions (Byatt-Smith 1971). The resulting wall residence time may be written in the
form

t
r

τ
¯

2

o3
ln 0o3­1

o3®11 ε−"/#­O(ε"/#), (3.1)

where time is made dimensionless with respect to τ¯ (h}g)"/#. Equation (3.1) shows
that t

r
U¢ as εU 0, a feature stemming from the fact that the effective length of the

wave increases to infinity in this limit.
Higher-order corrections to (3.1) may be found using the results of SM who

computed the interaction waveform for two waves in head-on collision to O(ε$). The
interaction waveform ζ(ξ, η) is reported as equation (50) in their paper in terms of
phase variables ξ(x, t) for right-running and η(x, t) for left-running waves given by their
equations (53) and (54), respectively. It has been observed (Byatt-Smith 1988) that the
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F 1. Schematic diagram of the incoming and outgoing wave crest trajectory for a large-
amplitude wave showing the attachment time t

a
, the lag time t

l
, the time of maximum run-up t

!
, and

the detachment time t
d
.

perturbation expansion is not uniformly valid for large time – hence SM’s results must
be interpreted with caution. The time origin for these mathematical calculations is the
time of perfect reflection shown in figure 1.

To see whether our numerical computations are in agreement with asymptotic
trends, we calculate only leading-order and first corrections to the time and amplitudes
of wave attachment, detachment and maximum collision amplitude. The interaction
waveform for two waves of equal amplitude ε in head-on collision given by SM, correct
to O(ε#), may be written

ζ(ξ, η)¯ (S#

"
­S#

#
) ε­[®$

%
(S#

"
­S#

#
)­$

%
(S%

"
­S%

#
)­"

#
S#

"
S#

#
] ε#, (3.2)

where here, and in what follows,

S
"
¯ sech (ξ}2), S

#
¯ sech (η}2), T

"
¯ tanh (ξ}2), T

#
¯ tanh (η}2). (3.3)

Defining the linear phase speed c
!
¯ (gh)"/# and introducing the constants α¯o3}2h

and β¯ h}4o3, the phase variables in (3.2) are given by

ξ(x, t)

2α
¯ (x®c

!
t) ε"/#­2β(T

#
­1) ε®(&

)
x®"

)
c
!
t) ε$/#­O(ε#), (3.4a)

η(x, t)

2α
¯ (x­c

!
t) ε"/#­2β(T

"
®1) ε®(&

)
x­"

)
c
!
t) ε$/#­O(ε#), (3.4b)

The location x¯ 0 of mid-interaction in this formulation may be considered as the
position of a vertical boundary for solitary wave reflection. We will make use of the fact
that at the wall the phase variables satisfy the symmetry relation ξ(0, t)¯®η(0, t). The
attachment and detachment times are found by determining when the curvature of the
free surface at the waterline changes from negative to positive, i.e. when the second
partial x-derivative of ζ vanishes. Denoting D¯ ¥}¥x we find the x-derivative of (3.2)
at x¯ 0:

Dζ¯®2S#

"
T
"
D(ξ}2) [ε­µ

"
ε#]®2S#

#
T
#
D(η}2) [ε­µ

#
ε#], (3.5)

where µ
"
¯®$

%
­$

#
S#

"
­"

#
S#

#
, µ

#
¯®$

%
­$

#
S#

#
­"

#
S#

"
. (3.6)
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Differentiating (3.4a, b) yields

D(ξ}2)¯α[ε"/#­δ
"
ε$/#], D(η}2)¯α[ε"/#­δ

#
ε$/#], (3.7)

where δ
"
¯ "

%
S#

#
®&

)
, δ

#
¯ "

%
S#

"
®&

)
, (3.8)

and hence (3.5) becomes

Dζ¯®2α(S#

"
T
"
­S#

#
T
#
) ε$/#®2α[S#

"
T
"
(µ

"
­δ

"
)­S#

#
T
#
(µ

#
­δ

#
)] ε&/#. (3.9)

We are interested in the solution of D#ζ¯ 0 evaluated at the wall, where x¯ 0. If
x¯ 0 then T

"
[ξ(0, t)]¯®T

#
[η(0, t)] for all t. A straightforward calculation yields

Dζ¯®2αε$/#(T
"
­T

#
) [1®T#

"
­T

"
T
#
®T#

#

­ε"
)
²7®19(T#

"
­T#

#
)­13T

"
T
#
­18T#

"
T#

#
­12(T%

"
®T$

"
T
#
®T

"
T$

#
­T%

#
)´].

in which it is implied that the arguments of T
"
and T

#
are evaluated at x¯ 0. The factor

(T
"
­T

#
) is always zero at the wall owing to the symmetry of the interaction for equal-

amplitude waves. D#ζ vanishes when the factor in square brackets vanishes. So setting
this factor equal to zero, and putting T

"
¯®T

#
, gives an equation which will implicitly

determine the times of attachment and detachment:

1®3T#

#
­ε"

)
(7®51T#

#
­66T%

#
)¯ 0. (3.10)

Expanding the nested expressions T
#
¯T

#
(T

"
(T

#
…)) to sufficiently high order, with the

repeated use of 3.4(a, b), ultimately yields the following explicit expressions:

t
a

τ
¯

2

o3
[®κ

!
ε−"/#­"

)
(2®κ

!
) ε"/#] ,

t
d

τ
¯

2

o3
[­κ

!
ε−"/#­"

)
(2­κ

!
) ε"/#] ,

(3.11a, b)

where κ
!
¯ tanh−" (1}o3) and the subscripts denote attachment and detachment,

respectively. Note that t
d
¯®t

a
at leading order and the residence time t

r
is in accord

with the result (3.1) given by Temperville (1979), Power & Chwang (1984), and Cooker
(1990). At higher orders the attachment and detachment times are no longer
antisymmetric about t¯ 0.

The amplitude of the waves at attachment and detachment found by inserting (3.11)
into (3.2) and carrying out the expansions, are given by

ζ
a

h
¯ %

$
ε­"

*
[o3(2®κ

!
)®1] ε#,

ζ
d

h
¯ %

$
ε®"

*
[o3(2­κ

!
)®1] ε#. (3.12a, b)

At lowest order the attachment and detachment amplitudes are the same, but this
symmetry is broken at O(ε#).

3.2. Maximum run-up

An asymptotic result for the time t
!

at which the water level at the wall reaches its
maximum value ζ

!
is determined as follows. The condition for maximum run-up is that

S
"
¯S

#
¯ 1 simultaneously at the wall, a condition guaranteed if the arguments

ξ(0, t)¯®η(0, t) are zero. In order to obtain non-trivial leading-order and first
correction results, we must use the highest-order phase variable results of SM. Setting
x¯ 0 in the O(ε&/#) result for ξ in equation (53) of SM leads to the equation

®tW
!
ε"/#­2αβ(T

#
­1) ε­"

)
tW
!
ε$/#

­β (18S#

"
(T

#
­1)®"$

#
T
#
®T$

#
®"&

#
) ε#® &*

'%!
tW
!
ε&/#¯ 0, (3.13)

implicitly determining the maximum run-up time tW
!
¯αc

!
t
!
. Expanding the nested

terms T
#
[ζ(0, t)] with the aid of (3.4b) for small ε one obtains the explicit equation

®tW
!
ε"/#­"

%
ε­$

)
tW
!
ε$/#­&

%
ε#­0)!"'%!

tW
!
­ "

"#
tW $
!
) ε&/#¯ 0. (3.14)
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(a)

F 2. Free surface profiles for the fully nonlinear potential flow code for incoming and outgoing
waves for (a) ε¯ 0±2, and (b) ε¯ 0±5. The time between successive profiles is τ}2. The horizontal and
vertical scales are equal. The free surface at maximum run-up is shown.

Assuming a series solution for tW
!

in powers of εn/# and inserting into (3.14) yields
equations for the unknown coefficients at each order. Solution of these equations
furnishes the maximum run-up time

t
!

τ
¯

1

2o3
(ε"/#­%$

)
ε$/#)­o(ε#). (3.15)

Thus t
!
always occurs later than the instant t¯ 0 predicted by a linear superposition
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of the wave and its image. Insertion of (3.15) into (3.2) gives the maximum run-up
amplitude correct to O(ε#) as in (1.1a).

3.3. Phase speed at impact

Both experiment and numerical calculations show that the phase trajectories of both
the incident and reflected waves are very steep near the wall. Maxworthy (1976)
observed this feature in spite of the paucity of experimental data in the near-wall
region. Well-resolved numerical simulations by Mirie & Su (1982), Fenton & Rienecker
(1982), Grilli & Svendsen (1990), and Cooker (1990) suggest possibly infinite
instantaneous phase speeds at the wall. Fenton & Rienecker write that the incident
wave crest ‘snaps through’ to the wall.

The slope of the trajectory at the wall may be determined using (3.9) for the wave crest
position x

c
(t). To leading order the position of the wave crest is given by the second

root in
S#

"
T
"
­S#

#
T
#
¯ (T

"
­T

#
) [1­T

"
T
#
®T#

"
®T#

#
]¯ 0. (3.16)

The implicit transcendental relation determining the position x
c
(t) of the incoming

(x& 0, t! 0) wave is obtained using the positive root of the quadratic in square
brackets, namely

T
"
¯ "

#
(T

#
­(4®3T#

#
)"/#). (3.17)

Taking the time derivative of (3.17) gives the phase speed for an incoming wave

xd
c
¯ c

! 9S#

"
(2T

"
®T

#
)®S#

#
(2T

#
®T

"
)

S#

"
(2T

"
®T

#
)­S#

#
(2T

#
®T

"
): , (3.18)

in which the arguments ²k(x
c
(t)­ct)´ of the hyperbolic functions are found by solution

of (3.17). As the wave approaches the wall x
c
U 0 and tU t

a
which gives S#

"
¯S#

#
and

T
#
¯®T

"
. Thus the phase speed as the wave impacts the wall is given by

xd
c
¯ c

! 93T
"
®3T

#

T
"
­T

#

:U¢ as T
#
U®T

"
. (3.19)

An identical result is obtained for the outgoing trajectory obtained using the negative
radical in (3.17) valid for (x& 0, t" 0). Thus the phase velocities xd

c
for both the

incident and reflected waves are infinite at the wall at lowest order in the perturbation
formulation. Analysis of the equations describing the first correction to this result
shows that crest speeds at attachment and detachment are finite and unequal.

4. Results

4.1. Numerical calculations and asymptotic results

The asymptotic results of Byatt-Smith (1988) for small-amplitude waves, and the work
presented in §3, suggest that reflection is not symmetric. We can safely infer that the
reflection process for high-amplitude waves is also not symmetric in time. At distances
asymptotically far from the wall the incident wave is a pure solitary wave, and the
reflected disturbance is a solitary wave of smaller amplitude followed by a dispersive
tail. The asymmetry of the reflection process is also evident in the critical times t

a
, t

d
,

and t
!
, previously defined, and in t

m
, the time of maximum instantaneous force. The

sequence of events during reflection, which we have gleaned from the numerical
solutions, is as follows. The wave approaches the wall and the waterline rises. When
the crest is less than about 2h from the wall the crest accelerates. At the instant t

a
the

crest of the wave has ‘snapped through’ to the wall with a corresponding elevation
ζ
a
. During this period the force on the wall has its first and foremost maximum,

at time t
m
. For ε! 0±3, t

m
E t

!
and the force is mainly due to hydrostatic pressure. For
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F 3. Wave trajectories computed for (a) ε¯ 0±2 and (b) ε¯ 0±5.

0.20

10 20 30
t/τ

(a)

ζc

h

0.25

0.30

0.35

0.40

Attachment
Detachment

10 20 30
t/τ

(b)

ζc

h

0.6

0.8

1.0

1.2

Attachment

Detachment

00

F 4. Wave crest amplitude as a function of time computed for (a) ε¯ 0±2 and (b) ε¯ 0±5
using the numerical code. Attachment and detachment points are indicated.

ε" 0±3, however, the force maximum occurs while the waterline is still rising and a
second smaller force maximum evolves during run-down. Lastly, the waterline detaches
at t

d
with an elevation ζ

d
always less than ζ

a
. A characteristic feature of the inter-

action is that the waterline at the wall spends more time falling than rising, i.e.
(t
!
®t

a
)! (t

d
®t

!
).

Wave interaction profiles computed using the boundary-integral method for a low-
amplitude wave ε¯ 0±2 and a moderately high-amplitude wave ε¯ 0±5 are presented
in figures 2(a) and 2(b), respectively. Time is measured relative to the start of the
computation for a solitary wave placed at distance x

!
from the wall. The corresponding

wave crest trajectories are plotted in figures 3(a) and 3(b). In each case the wave
propagates along a nearly straight trajectory until, near x}hE 2, it rapidly accelerates
and attaches to the wall. At the end of the time that the crest is in residence at the wall,
the crest leaves the wall at very high speed, but immediately decelerates into an almost
straight trajectory nearly parallel to the trajectory formed by perfect reflection of the
incident wave. In each case the phase shift continuously decreases as the wave moves
away from the wall, but it is difficult to determine its final state. A much more sensitive
measure of wave evolution is provided by the amplitude plots in figures 4(a) and 4(b).
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F 5. (a) Attachment and detachment times as a function of incident wave amplitude: —E—,
attachment and —U—, detachment numerical results ; –––, O(ε−"/#) ; –[–[, O(ε"/#) asymptotics
determined using the results of SM. (b) Wall residence time as a function of incident wave amplitude:
—E—, numerical results ; –––, O(ε−"/#) ; –[–[, O(ε"/#) asymptotics determined from the perturbation
results of SM. (c) Time at maximum run-up as a function of incident wave amplitude: —E—,
numerical results ; –––, O(ε"/#) ; –[–[, O(ε$/#) asymptotics determined from the perturbation results of
SM. The time origin in each of (a–c) is the mathematical centre of perfect reflection.

Both the small- and moderate-amplitude wave crests are still in a stage of adjustment
at t}τ¯ 30. Owing to the finite domain of the calculations, the evolution of the primary
wave crest asymptotically far from the wall cannot be determined. Nonetheless, there
is evidence of larger attenuation of the reflected wave for ε¯ 0±5 than for ε¯ 0±2
(note the different vertical scales in figures 4(a) and 4(b)).

Numerically determined attachment, detachment, and maximum run-up times are
compared with asymptotic results in figure 5. The mathematical origin for the
numerical computations was determined by projecting the trajectories of the incident
waves to the wall as indicated by the dashed line in figure 1, using the release points
x
!

and the numerically calculated nonlinear phase speeds c listed in table 1. The
computed values of t

a
, t

d
, t

r
, t

!
and ζ

!
are listed in table 2. Numerical results for t

a
and

t
!

are given up to ε¯ 0±7; the program fails at ε¯ 0±75 because of its inability to
describe the neighbourhood of the waterline, which is an ascending narrow jet.
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c}(gh)"/#

ε x
!
}h Numerical Exact

0±075 20±624 1±0362 1±0361
0±100 22±609 1±0478 1±0480
0±150 17±395 1±0717 1±0717
0±200 16±166 1±0944 1±0943
0±250 15±100 1±1163 1±1163
0±300 19±558 1±1376 1±1375
0±350 13±642 1±1581 1±1581
0±400 14±558 1±1781 1±1781
0±450 12±737 1±1973 1±1973
0±500 12±958 1±2158 1±2158
0±550 11±994 1±2334 1±2334
0±600 12±402 1±2500 1±2500
0±650 11±751 1±2653 1±2653
0±700 11±554 1±2789 1±2789

T 1. Release points and numerically calculated phase speeds for various wave amplitudes

ε t
a
}τ t

d
}τ t

r
}τ t

!
}τ ζ

!
}h

0±075 ®2±792 2±801 5±593 0±1157 0±1530
0±100 ®2±448 2±468 4±916 0±1265 0±2055
0±150 ®2±027 2±089 4±116 0±1741 0±3130
0±200 ®1±789 1±883 3±672 0±2252 0±4241
0±250 ®1±629 1±758 3±387 0±2642 0±5395
0±300 ®1±521 1±676 3±197 0±3087 0±6602
0±350 ®1±444 1±617 3±061 0±3519 0±7875
0±400 ®1±393 1±577 2±970 0±4008 0±9237
0±450 ®1±364 1±536 2±900 0±4569 1±0721
0±500 ®1±362 1±505 2±867 0±5280 1±2384
0±550 ®1±394 — — 0±6248 1±4320
0±600 ®1±474 — — 0±7584 1±6677
0±650 ®1±597 — — 0±9474 1±9606
0±700 ®1±756 — — 1±1584 2±3279

T 2. Computed values of t
a
, t

d
, t

r
, t

!
and ζ

!
for various wave amplitudes

Numerical results for t
d
are given only up to ε¯ 0±50; at ε¯ 0±55 the program becomes

unstable as the instant of detachment is approached. Figure 5(a) exhibits the variation
of attachment and detachment times with ε. Plots of the wall residence time and the
time at maximum run-up are given in figures 5(b) and 5(c), respectively. In each figure
the improved asymptotics tend favourably toward the numerical computations.
However, the useful range of convergence of the asymptotics in figure 5(c) is very
limited.

Figure 6(a) displays the numerical computations and asymptotic results for the wave
amplitudes at attachment and detachment. Note that the equal-amplitude symmetry of
the asymptotics at O(ε) is broken at O(ε#), and that these highest-order results closely
conform to the numerical trends. In figure 6(b) the maximum run-up computations are
compared with SM’s prediction given by (1.2a) and with the numerical results of
Fenton & Rienecker (1982). With the exception of a single point near ε¯ 0±45, the
numerical values reported by Fenton & Rienecker (1982) are in excellent agreement
with the present computations.
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perturbation results of SM: –––, O(ε−"/#) ; –[–[, O(ε"/#). Note that at O(ε−"/#) the attachment and
detachment amplitudes are predicted to be equal. (b) Maximum run-up: —E—, numerical results ;
—V—, calculations of Fenton & Rienecker (1982) ; –––, O(ε) : –[–[, O(ε#) : [[[[, O(ε$) results of SM.

Figure 7(a) gives the instantaneous wall force, F
w
, as a function of time relative to

t
!
, for selected values of ε obtained from the fully nonlinear potential flow code. Note

that the single maximum for ε! 0±3 becomes a double maximum in the vicinity of
ε¯ 0±4. The force peak occurs before maximum run-up because the upsurging wave
forms a narrow jet. Figure 7(b) gives the maximum instantaneous force (F

w
)
m
, as a

function of ε, as computed here and by Fenton & Rienecker (1982) : note that our
results include much higher waves than the previous work. For ε¯ 0±5 Grilli &
Svendsen (1990) found (F

w
)
m

¯ 1±52ρgh#, which agrees with our value at this level
of ε.

4.2. Comparison with experiment

In Maxworthy’s (1976) measurements of solitary wave interactions, data were taken
from 8 mm cine film shot at 64 frames}s. We analyse one roll of the cine film made
available to us which documents 19 sequences of wave reflection at a vertical wall in
a lucite channel nominally 5 m in length with rectangular section 20 cm wide by 30 cm
high. As mentioned in the Introduction, the waves were produced manually in an effort
to obtain a single solitary wave. Segur (1973) has shown that a sufficiently large
compact initial disturbance will evolve into one or more solitary waves followed by a
dispersive tail. Careful viewing of the original film strip showed that many of the
incident waves were followed by a long, much smaller-amplitude wave that could have
been either the beginning of a dispersive tail or a second coherent solitary wave.

Backlighting through diffusive white paper and red colouring added to the water
permitted Maxworthy to obtain good definition of the free surface. The camera was
positioned some distance upstream of the endwall to record sufficient data to define the
incoming and outgoing trajectory of the primary disturbance. This placed the reflecting
boundary at the extreme edge of the field of view where the lighting was somewhat
diminished. For this reason the film strip was analysed on a Rank Cintell MK IIIC
enhanced cine film viewing system with x®y zooming and variable video level.
Measurements of the instants of wave attachment, maximum wave run-up, and wave
detachment were made by locating the frame nearest to the event with an estimated
error of ³1 frame. A separate stop-action film projector was used to extract amplitude
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measurements of the incident wave in the middle of the field of view, some one to three
wavelengths upstream of the endwall, depending on the incident wave amplitude. No
calibrated length scale was in the field of view, but fortunately the top of the lucite
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Run
h

(cm)
h­a
(cm) ε

t
a
®t

!

τ

t
d
®t

!

τ

t
r

τ

1 4±915 5±829 0±186 ®1±765 1±986 3±751
2 4±915 5±944 0±209 ®1±765 1±956 3±751
3 4±896 7±315 0±488 ®1±326 1±547 2±874
4 4±915 5±486 0±116 ®2±206 2±427 4±633
5 4±915 6±706 0±364 ®1±324 1±765 3±089
6 4±915 6±401 0±302 ®1±544 1±544 3±089
7 4±915 7±010 0±426 ®1±324 1±544 2±868
8 4±953 5±791 0±169 ®1±758 1±978 3±736
9 4±953 7±087 0±442 ®1±319 1±758 3±077

10 4±915 5±944 0±209 ®1±765 1±765 3±530
11 4±915 6±058 0±233 ®1±765 1±765 3±530
12 4±915 7±125 0±449 ®1±324 1±544 2±868
13 4±915 7±391 0±504 ®1±324 1±544 2±868
14 4±915 5±906 0±202 ®1±765 1±764 3±530
15 4±915 6±553 0±333 ®1±544 1±544 3±089
16 4±953 7±239 0±462 ®1±319 1±758 3±077
17 4±915 6±096 0±240 ®1±765 1±765 3±530
18 4±915 6±896 0±403 ®1±544 1±544 3±089
19 4±915 6±668 0±357 ®1±544 1±544 3±089

T 3. Measurements of the 19 wave reflections taken from Maxworthy’s cine film
of his 1976 experiment.

channel was visible in every frame. This 40±38 cm dimension provided an accurate†
reference from which measurements of the quiescent water level h and incident peak
wave elevation a could be made from an enlarged projection of the film onto a white
plastic surface.

Measurements of the 19 wave reflections were taken, with results given in table 3.
The experiments were all conducted with the same fluid volume having average
measured fluid depth h¯ 4±92 cm. The gravitational constant was taken to be
980 cm s# and we note that only time differences t

a
®t

!
, t

d
®t

!
and t

d
®t

a
can be

measured. Dimensionless plots of the first two quantities are given in figure 8(a) and
compared with our numerical computations. The experimental error bars represent
³0±22 dimensionless time units corresponding to the ³1}64 s estimated error in
locating the critical times. The numerical and experimental wall residence times are
compared in figure 8(b).

5. Discussion and conclusions

When a large-amplitude solitary wave collides with a vertical wall numerical results
and perturbation methods have already shown that the reflected wave is different from
its incident state. After reflection the solitary wave loses energy to a dispersive wave
train and loses height, so ultimately the speed of the reflected wave is smaller than
before collision. This observation shows that even within the confines of an inviscid
fluid model the so-called phase shift of a reflected solitary water wave is spatially
dependent. We have concentrated on examining the fluid flow in the neighbourhood of
the wall in order to determine details of the collision in this circumstance. In particular,
in the absence of a constant phase shift for large-amplitude incident waves, we have
computed the wall residence time which we put forth as an alternative measure of the

† We are indebted to Dr G. R. Spedding for providing us the measurement of the channel height.
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F 8. (a) A comparison of the attachment and detachment times taken from Maxworthy’s
(1976) measurements (+;) with our numerically determined values (—D—). The error bars are
³1}64 s. Time increases up the page and t¯ 0 corresponds to the instant of maximum run-up.
(i) The instant of attachment, (ii) the instant of detachment, as a function of ε. (b) A comparison of
measurements of the wall residence time taken from the cine film of Maxworthy (1976) with
numerically determined values. Symbols as for (a).

effect of wall–wave interaction. The numerical results show that once the wave crest
becomes attached to the wall, it spends less time ascending to maximum run-up than
it does descending to detachment, i.e. (t

!
®t

a
)! (t

d
®t

!
). The wall residence time is very

long for waves of small amplitude, and we confirm numerically the result of
Temperville (1979) that in the limit εU 0, t

r
is proportional to ε−"/#. However,

increasing the height of the incident wave causes t
r

to decrease to an approximately
constant value of about 3τ, a numerical result verified by experiment in figure 8(b).
There are two separate effects which contribute to t

r
. The first is the geometric effect

of linearly superposing two Korteweg–de Vries solitary waves. The second is a non-
linear effect in which a vertical jet takes time to ascend and descend the wall. In brief,
small-amplitude solitary waves spend a long time at the wall, while high-amplitude
waves create tall jets running up and down the wall during the nearly constant time
period 3τ. Grilli & Svendsen (1990) found for ε¯ 0±5 a time t

r
¯ 2±75 (h}g)"/#

which agrees reasonably well with our computed value t
r
¯ 2±87 (h}g)"/#.

The measurements of the time of run-up (t
!
®t

a
) and the time of run-down (t

d
®t

!
)

plotted in figure 8(b) are in accord with the numerical results over the available range
of experimental wave amplitudes 0±12! ε! 0±50. This may at first seem surprising in
view of the fact that some of the incident waves were followed by a weak secondary
wave or dispersive tail. The agreement between measurement and computation
suggests that small-amplitude trailing waves did not appreciably interfere with the lead
wave’s collision with the endwall. It may therefore be concluded that the wall residence
time t

r
is a robust measure of the phase change that takes place during wave reflection.

The numerical computations and asymptotic results derived from the perturbation
calculations of SM agree in two respects : first, the crest height at attachment is greater
than at detachment and, secondly, the crest takes longer to descend the wall than to
ascend it. Moreover, the numerically computed times of run-up and run-down are
confirmed by experiment in figure 8(a). We note that carrying out the asymptotic
calculations for attachment and detachment times to higher order gives a slight
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improvement only for values of ε less than approximately 0±15. This small range of
convergence is apparently due to the non-uniformity of the perturbation method, as
pointed out by Byatt-Smith (1988).

Figure 6(b) verifies that the run-up ζ
!
for weakly nonlinear waves is more than twice

the incident wave amplitude, in agreement with the original prediction of Byatt-Smith
(1971). At sufficiently high amplitude, ε" 0±65, the run-up is observed to exceed three
times the incident wave amplitude. As shown in figure 7(a), for ε! 0±3 the maximum
force occurs at maximum run-up, and the pressure in the fluid is mostly hydrostatic.
For ε" 0±4 the numerical calculations show that the vertical acceleration of the fluid
is significant, especially during the run-up phase of the collision. Also the fluid
acceleration associated with the upward projection of the water increases the pressure
near the wall above hydrostatic, and a first maximum occurs. After the vertical column
of fluid comes nearly to rest it slides back down the wall under the restoring force of
gravity. The fluid decelerates at the end of its descent and this is associated with
another increase in the wall pressure above its hydrostatic value, and so brings about
a second maximum in the force as a function of time, occuring after t

!
when ε is large.

The maximum force in figure 7(b) is a remarkably linear function of wave amplitude
up to ε¯ 0±7 considering the asymmetry in the instantaneous wall force in figure 7(a).

The main findings of this paper are as follows. Since the phase shift of a large-
amplitude solitary wave, reflecting from a vertical wall, is spatially dependent, these
waves are not solitons. In view of the fact that a constant phase shift does not exist,
we propose that a useful measure of phase changes incurred by the collision is the time
spent by the wave crest in residence against the wall. The instants at which the crest
attaches and detaches from the wall are well-defined and might be measured more
accurately in future experiments. Measures of the time spent by the crest at the wall
predicted numerically and measured experimentally are in accord. The computations
show a marked asymmetry in the motion between run-up and run-down. The
asymmetry partly explains the long-time behaviour of the reflected wave, which is
unsteady and pursued by small surface disturbances in the form of a dispersive tail. The
maximum run-up of the wave is in close agreement with previous studies, in particular
with the results of Fenton & Rienecker (1982) computed using a Fourier method for
solving the nonlinear wave problem. The force on the wall as a function of time has
two maxima when the wave has an incident height greater than 0±4, as previously noted
by Grilli & Svendsen (1990). The maximum force as a function of incident wave height
is quite linear, an observation yet to be adequately explained on physical grounds. The
waterline acceleration partly explains the increased pressures on the wall during run-
up and run-down. The acceleration of the crest towards attachment onto the wall, and
during detachment from the wall, is very large, in agreement with lowest-order
perturbation theory which predicts infinite horizontal phase speed of the wave crest at
attachment and detachment.

The authors are grateful to the University of East Anglia, UK for providing funds
for a Visiting Fellowship for one of us (P.D.W.) during the study reported here.
Stimulating discussions with Professor H. Segur are acknowledged. We are grateful to
Professor T. Maxworthy for making available his original cine film of solitary wave
reflections.
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